|
LIBRCSC Docs
Documentation for HELIOS's BASE LIBRCSC library for RoboCup 2D Simulation League.
|
Back Propagetion Neural Network. More...
#include <bpn1.h>
Public Types | |
| typedef double | value_type |
| typedef of the value type | |
| typedef std::array< value_type, INPUT > | input_array |
| typedef of the input array type that uses template parameter. | |
| typedef std::array< value_type, OUTPUT > | output_array |
| typedef of the output array type that uses template parameter. | |
Public Member Functions | |
| BPNetwork1 () | |
| default constructor More... | |
| BPNetwork1 (const value_type &eta, const value_type &alpha) | |
| create with learning parameter More... | |
| template<typename RNG > | |
| BPNetwork1 (const value_type &eta, const value_type &alpha, RNG &rng) | |
| create with random number generator More... | |
| void | init () |
| init member variables | |
| template<typename RNG > | |
| void | randomize (RNG &rng) |
| create unit connection randomly More... | |
| void | propagate (const input_array &input, output_array &output) const |
| simulate network. More... | |
| value_type | train (const input_array &input, const output_array &teacher) |
| update unit connection weights using teacher signal More... | |
| bool | read (std::istream &is) |
| read network structure from input stream. More... | |
| std::ostream & | print (std::ostream &os) const |
| put network structure to stream by "one" line More... | |
Back Propagetion Neural Network.
This class can take only one hidden layer, but unit number and activation function can be specified by template parameters.
|
inline |
default constructor
default training parameter is set.
|
inline |
create with learning parameter
| eta | training parameter |
| alpha | training parameter |
|
inline |
create with random number generator
| eta | training parameter |
| alpha | training parameter |
| rng | referenct to the random number generator object |
|
inline |
put network structure to stream by "one" line
| os | reference to the output stream |
|
inline |
simulate network.
| input | input data |
| output | reference to the data holder variable |
|
inline |
create unit connection randomly
| rng | referenct to the random number generator object |
|
inline |
read network structure from input stream.
| is | reference to the input stream |
|
inline |
update unit connection weights using teacher signal
| input | input data |
| teacher | teaching signal data |